ああああああああああああああああああああああああああああああああああああああああああああああああああああああああああ

qbm_test May 14

test 3



import numpy as np
import neal

def tsp_qubo(distances):
  n = distances.shape[0]
  Q = np.zeros((n, n))

  # Set diagonal elements to 0
  for i in range(n):
    Q[i][i] = 0

  # Set off-diagonal elements
  for i in range(n):
    for j in range(i+1, n):
      Q[i][j] = distances[i][j]
      Q[j][i] = distances[i][j]

  # Set quadratic bias
  q = np.ones(n) * -1

  return Q, q

# Example distances matrix
distances = np.array([[0, 10, 20, 30], [10, 0, 25, 35], [20, 25, 0, 15], [30, 35, 15, 0]])
Q, q = tsp_qubo(distances)

# Solve the problem using the D-Wave system
solver = neal.SimulatedAnnealingSampler()
response = solver.sample_qubo(Q, q)

# Print the solution
for sample in response.samples():
  print(sample)
qbm_test
Comments
qbm_test

blueqat Co., Ltd.

Shibuya Scramble Square 39F 2-24-12, Shibuya, Shibuya-ku, Tokyo
Contact: info@blueqat.com